
CS106A Handout 22

Winter 2015 February 26, 2015

Practice Second CS106A Midterm Exam

This exam is closed-book and closed-computer but open-note. You may have a double-sided,
8.5” × 11” sheet of notes with you when you take this exam. Please hand-write all of your solutions
on this physical copy of the exam.

In all questions, you may include methods, classes, or other definitions that have been developed
in the course by giving the name of the method or class and the handout, chapter number, lecture,
or file in which that definition appears.

Unless otherwise indicated as part of the instructions for a specific problem, comments will not
be required on the exam. Uncommented code that gets the job done will be sufficient for full
credit on the problem. On the other hand, comments may help you to get partial credit if they
help us determine what you were trying to do.

Unless stated otherwise, you do not need to worry about efficiency.

On the actual exam, there'd be space here for you to write your name and sign a
statement saying you abide by the Honor Code. We're not collecting or grading this
exam (though you're welcome to step outside and chat with us about it when you're
done!) and this exam doesn't provide any extra credit, so we've opted to skip that
boilerplate.

You have three hours to complete this exam. There are 50 total points.

Question Points Grader

(1) Isograms (10) / 10

(2) Announcing Election Results (10) / 10

(3) Short Answer Questions (10) / 10

(4) Kerning (10) / 10

(5) Animal Hipsters (10) / 10

(50) / 50

Good Luck!

2 / 10

Problem One: Isograms (10 Points)

An isogram is a word that contains no repeated letters. For example, the word “computer” is an iso-
gram because each letter in the word appears exactly once, but the word “banana” is not because 'a' and
'n' appear three times each. “Isogram” is itself an isogram, but “isograms” is not because there are two
copies of 's'. There are many long isograms in English; for example, “uncopyrightable” and “computer-
izably.”

Write a method

private boolean isIsogram(String word)

that accepts as input a string containing a single word, then returns whether that word is an isogram.
The input word won't contain spaces or punctuation, but it might contain both upper-case and lower-
case letters.

private boolean isIsogram(String word) {

3 / 10

Problem Two: Announcing Election Results (10 Points)

Suppose that you are in charge of writing software to tally up votes in an election. Your job is to write a
method

private String electionWinner(String[] votes)

This method accepts as input a String[] representing all the votes that were cast in an election. You
should then determine whether any candidate received strictly more than half the votes. If so, you
should return the name of that candidate. If no candidate won (perhaps, for example, there are three
candidates and each got a third of the votes), you should return null as a sentinel.

In writing this method, you can assume the following:

• Candidate names are case-insensitive, so “Karel the Robot” and “KAREL the ROBOT” should
both count as votes for Karel the Robot. Because candidate names are case-insensitive, you can
return the name of the winning candidate in any capitalization you'd like.

• There can be any number of candidates, not just two.

• There can be any number of votes in the input array, including zero.

private String electionWinner(String[] votes) {

4 / 10

Problem Three: Short Answer (10 Points)

(i) Comparing Data Structures, Part One (4 Points)

The String type is Java's standard way of storing text. You could also use a char[] to store text by
simply representing the text as an array of all of its characters.

Give one advantage of representing text as a String over representing text as a char[] and vice-versa.

(ii) Comparing Data Structures, Part Two (3 Points)

We've seen ArrayList<type>s as one way of storing a growable sequence of elements of type type. An-
other alternative would be to use a HashMap<Integer, type>, where the keys represent the indices and
the values represent the values stored at each position.

Give one advantage of representing a list as an ArrayList<type> over representing the list using a
HashMap<Integer, type> and vice-versa.

5 / 10

(iii) An iOS Vulnerability (3 Points)

Last year, Apple announced a serious security error in its iOS operating system that made it possible for
hackers to bypass security measures used when communicating over the internet. This was due to a
small programming error that's understandable given just what you've seen in CS106A so far.

Below is some code that contains an error similar to the one that caused the security bug in iOS. For
convenience, we've add line numbers to this code.

/**
 * Given a number, returns whether that number is divisible by
 * two, three, or five.
 *
 * @param number The number in question.
 * @return true if that number is divisible by two, three, or five
 * and false otherwise.
 */
 1: private boolean hasSmallDivisor(int input) {
 2: boolean result = false;
 3:
 4: if (input % 2 == 0)
 5: result = true;
 6:
 7: if (input % 3 == 0)
 8: result = true;
 9: result = true;
 10:
 11: if (input % 5 == 0)
 12: result = true;
 13:
 14: return result;
 15: }

This method is incorrect because it always returns true. Explain why. Be specific.

6 / 10

Problem Three: Kerning (10 Points)

Although we've used GLabel, we've never discussed how the computer actually displays text. Inter-
nally, the computer maintains a set of images representing what each character looks like. To display
text on the screen, the computer lays out these images side-by-side. For example, to display the string
“VAT,” the computer begins with a set of images for the letters V, A, and T, then places them side-by-
side to form the string. This is shown here:

V A T → VAT
Unfortunately, this approach to laying out text will distort certain strings. For example, consider the fol-
lowing rendition of the string “THE VATICAN:”

THE VATICAN
Notice how the V, A, and T in “VATICAN” appear to be spaced out more than the T, I, and C. The rea-
son for this is that the images for the letters V, A, and T have a lot of whitespace in them. When the im-
ages for the letters are placed next to one another, this whitespace adds up and spaces the letters farther
apart than they should be.

To correct for this, the computer typically overlaps the images for certain pairs of letters to reduce
whitespace. For example, if we slightly overlap the images for V and A and the images for A and T, we
get this rendering of the word VAT:

VAT
The amount that the images of two letters overlap is called the kern, and the process of overlapping let-
ters this way is called kerning. Kerning can make text much more aesthetically pleasing. Compare the
above rendition of “THE VATICAN,” which had no kerning, to this one, which has been kerned:

THE VATICAN
Notice how there is less blank space between the V, A, and T in VATICAN.

Your task in this problem is to write a method that will accept as input images of two letters, then will
kern the images by some specified amount. For example, here is the sample output of this method on
the letters V and A with several different kerns; the vertical bar in the outputs marks the end of the V
image:

7 / 10

For simplicity, and to avoid some of the complexities of GImage, we will represent the images of letters
as two-dimensional arrays of booleans indicating for each pixel in the image whether the pixel is white
(false) or black (true). As an example, the letter A might be represented as follows:

{
 { false, false, false, false, true, false, false, false, false },
 { false, false, false, false, true, false, false, false, false },
 { false, false, false, true, false, true, false, false, false },
 { false, false, false, true, false, true, false, false, false },
 { false, false, true, false, false, false, true, false, false },
 { false, false, true, false, false, false, true, false, false },
 { false, true, true, true, true, true, true, true, false },
 { false, true, false, false, false, false, false, true, false },
 { false, true, false, false, false, false, false, true, false },
 { true, true, true, false, false, false, true, true, true }
}

Write a method

private boolean[][] kernLetters(boolean[][] first, boolean[][] second, int kern)

that accepts as input two boolean arrays representing images of letters, along with an amount to over-
lap the two images, then returns a new boolean array representing the image formed by kerning the
two letters by the given amount. You can assume that the two images have the same height, though they
might not have the same width. You can also assume that the amount to kern the letters is nonnegative
and is smaller than the widths of either image.

As shown in the sample outputs at the top of this page, the resulting image should be no wider than
necessary. If the kern is zero, the width of the resulting image should be the width of the two individ-
ual images put together. As the kern increases, the width of the result image should decrease.

Write your solution on the next page, and feel free to tear out this page and the previous as a reference.

Kern 0

Kern 1

Kern 2

8 / 10

private boolean[][] kernLetters(boolean[][] first, boolean[][] second, int kern) {

9 / 10

Problem Five: Animal Hipsters (10 Points)

Suppose that you have a social network represented as a graph, like this one here:

Amy

Devney

Chris

Elena

Brie

Fan­Hal

Brie

As in lecture, we will represent this graph as a HashMap<String, ArrayList<String>>, where each
key in the HashMap is the name of a person and each value is an ArrayList of the names of the people
they are friends with.

Let's suppose that every person in a social network has a favorite animal. We'll say that a person is an
animal hipster if their favorite animal is different from all of their friends' favorite animals. For exam-
ple, suppose that everyone's favorite animals are specified as follows:

Amy
(Quokka)

Devney
(Springbok)

Chris
(Nubian Ibex)

Elena
(Quokka)

Brie

Fan­Hal
(Springbok)

Brie
(Springbok)

Given the above social network, we would have that Amy, Chris, Elena, and Fan-Hal are animal hip-
sters, but Brie and Devney are not (because both of them like springboks and are they friends of one
another). Although both Amy and Elena like quokkas, they are still animal hipsters because they are not
friends of one another.

Write a method

 private ArrayList<String> findAnimalHipsters(HashMap<String, ArrayList<String>> network,
 HashMap<String, String> favoriteAnimals)

that accepts as input a social network network and a HashMap<String, String> favoriteAnimals asso-
ciating each person in the network with their favorite animal, then returns an ArrayList<String> con-
taining all the people in the network who are animal hipsters.

(Continued on the next page)

10 / 10

In writing this method, you should assume the following:

• The network and favoriteAnimals HashMaps have the same set of keys, so every person in
the graph has a favorite animal and everyone who has a favorite animal is in the graph.

• For simplicity, you can assume animal names are case-sensitive, so “Nubian Ibex” and “nubian
ibex” should be treated as different animals.

• You are free to return the animal hipsters in any order that you'd like, though each animal hip-
ster should appear in the list at most once.

Although we haven't seen this yet, you can iterate over the keys of a HashMap by using a range-based
for loop by writing

for (String key: map.keySet()) {
/* … */

}

Write your method in the space below.

private ArrayList<String> findAnimalHipsters(HashMap<String, ArrayList<String>> network,
 HashMap<String, String> favoriteAnimals) {

